Prototype Penyimpanan Buah dan Sayur Menggunakan Ozon dan Metode Evaporative Cooling sebagai Sistem Pendingin
Abstract
Buah dan sayur merupakan bahan pangan yang bernilai gizi tinggi dan sangat bermanfaat bagi kesehatan. Namun, selama penyimpanan terjadi penurunan kualitas pada buah dan sayur yang disebabkan oleh tumbuhnya bakteri dan mikroorganisme. Metode pengawetan yang efektif, hemat energi dan ramah lingkungan dibutuhkan untuk memperpanjang masa simpan buah dan sayur tersebut. Penelitian ini bertujuan untuk menghasilkan sebuah prototype untuk mengatasi permasalahan tersebut. Prototype yang dirancang memanfaatkan ozon dan evaporative cooling untuk sistem pendinginan. Reaktor DBD dengan konfigurasi elektrode jaring-jaring digunakan untuk menghasilkan ozon sebagai desinfektan. Pembangkitan ozon membutuhkan daya total sebesar 15 watt. Pot refrigerator digunakan sebagai sistem pendingin hemat energi. Kondisi pada tempat penyimpanan, jumlah bakteri dan kondisi fisik pada buah dan sayur digunakan untuk menguji prototype. Prototype yang dihasilkan mampu mencapai suhu 25oC dengan relative humidity sebesar 95% pada tempat penyimpanannya. Buah dan sayur dengan jumlah bakteri awal sebanyak 6,5x103 cfu/100mL mampu berkurang menjadi 3,5x103 cfu/100mL setelah dicuci menggunakan ozon. Setelah penyimpanan selama tiga hari jumlah bakterinya menjadi 5,6x103 cfu/100mL, sedangkan variabel kontrol mencapai 16,6x103 cfu/100mL. Treatment yang dilakukan mampu menghambat perkembangan bakteri hingga dua kali lipatnya. Prototype yang dihasilkan mampu meningkatkan massa buah dan sayur dengan tampilan yang lebih segar dibanding variabel kontrol setelah disimpan selama tiga hari.
Fruits and vegetables were a food of high nutritional value and were beneficial to health. However, after the harvest and during storage there was a decrease in the quality of fruits and vegetables caused by the growth of bacteria and microorganisms. This study aimed to produced a prototype to overcome these problems. Prototype designed utilizing ozone and evaporative cooling for refrigeration. The conditions at the storage place, the number of bacteria and the physical condition of the fruit and vegetables were used to test the prototype. The resulting prototype capable of reached temperatures of 25oC with a relative humidity of 95% in storage. Fruits and vegetables with the initial bacterial counts as much as 6.5x103 cfu/ml was able to be reduced to 3.5x103 cfu/ml after being washed using ozone. After storage for three days the amount of bacteria into 5.6x103 cfu/ml, whereas the control variable reached 16.6x103 cfu/ml. Treatment was carried out and could inhibit the growth of bacteria up to twice as much. The resulting prototype was able to increase the mass of fruits and vegetables with a fresh look compared to the control variable after being stored for three days.
Keywords
Full Text:
PDFReferences
Alhamdan, A. et al., 2015. Cryogenic freezing of fresh date fruits for quality preservation during frozen storage. Journal of the Saudi Society of Agricultural Sciences.
Anyanwu, E.E., 2004. Design and measured performance of a porous evaporative cooler for preservation of fruits and vegetables. Energy Conversion and Management, 45(13-14), pp.2187–2195.
Artés, F. et al., 2009. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51, pp.287–296.
Becker, B.R., Ph, D. & Fricke, B. a, 2014. Transpiration and Respiration of Fruits and Vegetables. Universidad of Missouri, p.18.
Bozkurt, F. et al., 2016. Effect of vaporized ethyl pyruvate as a novel preservation agent for control of postharvest quality and fungal damage of strawberry and cherry fruits. LWT - Food Science and Technology, 65, pp.1044–1049.
Date, a. W., 2012. Heat and mass transfer analysis of a clay-pot refrigerator. International Journal of Heat and Mass Transfer, 55(15-16), pp.3977–3983.
Green ,Don W. and Robert, H. Perry. Perry's Chemical Engineers' Handbook 8th ed. New York. USA :Mc-Graw.
Kasso, M. & Bekele, A., 2016. Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, (January).
Li, X. & Farid, M., 2016. A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering.
Lovato, M.E., Martín, C.A. & Cassano, A.E., 2009. A reaction kinetic model for ozone decomposition in aqueous media valid for neutral and acidic pH. Chemical Engineering Journal, 146(3), pp.486–497.
Lyu, F. et al., 2016. Effect of pretreatment with carbon monoxide and ozone on the quality of vacuum packaged beef meats. Meat Science, 117, pp.137–146.
Miller, F.A., Silva, C.L.M. & Brandão, T.R.S., 2013. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. Food Engineering Reviews, 5(2), pp.77–106.
Patil, S. et al., 2014. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. Journal of Hospital Infection, 88(3), pp.162–169.
Rakness, K., Gordon, G. & Langlais, B., 1996. Guideline for measurement of ozone concentration in the process gas from an ozone generator.
Ramos, B. et al., 2013. Fresh fruits and vegetables - An overview on applied methodologies to improve its quality and safety. Innovative Food Science and Emerging Technologies, 20, pp.1–15.
Sung, T.-L. et al., 2013. Effect of pulse power characteristics and gas flow rate on ozone production in a cylindrical dielectric barrier discharge ozonizer. Vacuum, 90, pp.65–69.
Watanabe, T. et al., 2015. The influence of inhibit avoid water defect responses by heat pretreatment on hot air drying rate of spinach. Journal of Food Engineering, 168, pp.113–118.
Widdel, F., 2007. Theory and measurement of bacterial growth. Di dalam Grundpraktikum Mikrobiologie, pp.1–11.
DOI: http://dx.doi.org/10.17728/jatp.213
Refbacks
- There are currently no refbacks.
View My Stats